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Abstract: We prove that for any positive integer d, the generic rigidity matroidRd(G) uniquely
determines the underlying graph G, provided that either G is d(d+1)2-connected, or Rd(G) is
(vertically) (d(d+ 1))2-connected. This extends previous results for the d = 1 and d = 2 cases.
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1 Introduction

In this note, we investigate when the d-dimensional generic rigidity matroid Rd(G) of a graph G determines
G. Whitney gave a complete answer to this question in the d = 1 case by showing that for any pair of
graphs G and H, any isomorphism of the graphic matroids R1(G) and R1(H) arises from a 2-isomorphism
of G and H. In particular, his result implies the following unique reconstructibility result for 3-connected
graphs.

Theorem 1 [10] Let G and H be graphs, and let ψ : E(G) → E(H) be an isomorphism of R1(G) and
R1(H). If G is 3-connected and H is without isolated vertices, then ψ is induced by a graph isomorphism.

Our goal is to prove an analogue of Theorem 1 for higher values of d. For convenience, let us say that
a graph G is Rd(G)-reconstructible if for every graph H without isolated vertices and every isomorphism
ψ : Rd(G) → Rd(H), ψ is induced by a graph isomorphism φ : G → H. (That is, ψ(uv) = φ(u)φ(v)
holds for every edge e ∈ E(G).) Using this terminology, Theorem 1 says that every 3-connected graph is
R1-reconstructible. The constant 3 is best possible: a cycle of length at least four is not R1-reconstructible,
since its graphic matroid has automorphisms that are not induced by automorphisms of the cycle.

Jordán and Kaszanitzky proved the following reconstructbility result in the two-dimensional case.

Theorem 2 [5] Every 7-connected graph is R2-reconstructible.

The proof of Theorem 2 relies on the fact that every 6-connected graph is 2-rigid, a classical result of
Lovász and Yemini [6]. In fact, it is not difficult to see that a statement of the form “every c-connected
graph is Rd-reconstructible” also implies the statement “every c-connected graph is d-rigid.” Since for the
theorem of Lovász and Yemini, the constant 6 is known to be best possible, it follows that the constant in
Theorem 2 cannot be improved beyond 6. It is open whether the constant 7 is best possible.

In a recent breakthrough, Villányi proved the following d-dimensional analogue of the theorem of
Lovász and Yemini.

Theorem 3 [9, Theorem 1.1] Every d(d+ 1)-connected graph is d-rigid.

In this note, we use Theorem 3 to derive a d-dimensional analogue of Theorems 1 and 2.

Theorem 4 Every d(d+ 1)2-connected graph is Rd-reconstructible.

The constant d(d + 1)2 is probably far from optimal. In particular, it remains open whether every
d(d+ 1)-connected graph is Rd-reconstructible.

Our proof method also leads to a reconstructibility result where instead of assuming that the graph G
is highly connected, we assume that the matroid Rd(G) is highly (vertically) connected.

Theorem 5 Let G be a graph. If Rd(G) is (vertically) (d(d+1))2-connected, then G is Rd-reconstructible.
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Theorem 5 answers positively a question of Brigitte and Herman Servatius [1, Problem 17].
Compared to previous Whitney-type reconstructibility results (such as Theorems 1 and 2 and results

found in [3]), the main novelty of our proof is that it is not based on a combinatorial characterization
of the rank function of the matroid in question. Indeed, finding such a (good) characterization for the
d-dimensional generic rigidity matroid is a major open problem in the d ≥ 3 cases.

We note that our proofs work for all 1-extendable abstract rigidity matroids. In fact, the ideas in this
note are extended in [2] to show that for a rather general class of matroids, a Lovász-Yemini-type rigidity
result (such as Theorem 3) leads to a Whitney-type reconstructibility result (such as Theorem 4).

2 Proof of main results

We assume basic knowledge of matroid theory and combinatorial rigidity theory. For references, see [4, 7, 8].
For a vertex v of a graph G, we shall let ∂G(v) denote the set of edges incident to v, while dG(v) = |∂G(v)|
denotes the degree of v in G. The key concept behind our proof of Theorem 4 is the notion of vertical
connectivity of matroids, which we recall below.

Let M = (E, r) be a matroid with rank function r and let k be a positive integer. We say that a
bipartition (E1, E2) of E is a vertical k-separation of M if r(E1), r(E2) ≥ k and

r(E1) + r(E2) ≤ r(E) + k − 1

holds. In this case r(Ei) < r(E) for i ∈ {1, 2}. We say that M is vertically k-connected if k ≤ r(M) and
M does not have vertical k′-separations for any positive integer k′ < k. For k = 1, the latter condition is
vacuous, and hence every matroid with positive rank is vertically 1-connected.

The following lemma shows that for certifying that a matroid is not vertically k-connected, it suffices
to consider “vertical separations” E = E1 ∪ E2 in which E1 and E2 are not necessarily disjoint.

Lemma 6 Let M = (E, r) be a matroid, and let E1, E2 ⊆ E be subsets of E, not necessarily disjoint,
with E = E1 ∪ E2. Suppose that r(E1), r(E2) ≥ k and r(E1) + r(E2) ≤ r(E) + k − 1. Then M has a
vertical k′-separation for some k′ ≤ k.

Proof: Let E′
2 = E2 −E1. Then (E1, E

′
2) is a bipartition of E, and it is straightforward to check that it

is a vertical k′-separation for k′ = k − (r(E2)− r(E′
2)). □

It is well-known that a graph without isolated vertices is k-connected if and only if its graphic matroid
is vertically k-connected. The main ingredients to our proof of Theorem 4, Propositions 8 and 9 below, are
partial generalizations of this fact to the d-dimensional generic rigidity matroid. Proposition 8 states that
if Rd(G) has sufficiently high vertical connectivity, then G must have high vertex-connectivity (provided
that it has no isolated vertices). Conversely, Proposition 9 shows that if G is highly vertex-redundantly
rigid, then Rd(G) must have high vertical connectivity. Finally, by Theorem 3, high vertex-connectivity
implies high vertex-redundant rigidity. By combining this triangle of implications with ideas from previous
Whitney-type reconstructibility results, we can deduce that sufficiently highly connected graphs are
Rd-reconstructible.

The next lemma follows from [5, Theorem 4.2]. Since the proof is simple, we include it for completeness.

Lemma 7 Let G = (V,E) be a graph, and let k ≥ 2 be an integer. If Rd(G) is vertically k-connected,
then |V | ≥ k + d.

Proof: If d = 1, then by definition we have k ≤ rd(G) ≤ |V | − 1. Thus we may assume d ≥ 2. Note that
since Rd(G) is vertically 2-connected, it is bridgeless and hence every vertex of G has degree at least d+1.
Let v ∈ V be a vertex of smallest degree in G, and let E1 be a set of dG(v)− d+ 1 edges incident to v.
Then (E1, E − E1) is a bipartition of E with rd(E1) = dG(v)− d+ 1 and

rd(E1) + rd(E − E1) ≤ dG(v)− d+ 1 + rd(E)− 1 = rd(E) + dG(v)− d.

Let w ∈ V − v be an arbitrary vertex of G. Then we have, using the fact that v has smallest degree,
rd(E − E1) ≥ dG(w)− 1 ≥ dG(v)− (d− 1). Thus (E1, E − E1) is a vertical (d(G)− d+ 1)-separation of
Rd(G). Since d(G)− d+ 1 ≤ |V | − d, this implies that |V | ≥ k + d, as desired. □

Proposition 8 Let G = (V,E) be a graph without isolated vertices, and let k ≥ d be an integer. If Rd(G)
is vertically (dk −

(
d+1
2

)
+ 2)-connected, then G is (k + 1)-connected.



Proof: Note that by Lemma 7, G has at least k + 2 vertices. Furthermore, since Rd(G) is vertically
2-connected, G is a connected (in fact, 2-connected) graph.

Suppose, for a contradiction, that G has a separator S of size at most k. By adding vertices to S
we may suppose that |S| = k. Let V1 be a component of G − S and V2 = V − (V1 ∪ S). Let us define
Gi = G[Vi ∪ S] and G′

i = Gi + E(K(S)), for i ∈ {1, 2}, where K(S) denotes the complete graph on S.
Finally, let us define

ai = d|Vi ∪ S| −
(
d+ 1

2

)
− rd(Gi), and bi = d|Vi ∪ S| −

(
d+ 1

2

)
− rd(G

′
i),

for i ∈ {1, 2}. In other words, ai and bi are the d-dimensional degrees of freedom of Gi and G
′
i, respectively.

By symmetry, we may assume that a1 − b1 ≤ a2 − b2.
We shall show that

rd(Gi) ≥ kd−
(
d+ 1

2

)
− (a2 − b2) + 1, i ∈ {1, 2}, (1)

and

rd(G1) + rd(G2) ≤ rd(G) + kd−
(
d+ 1

2

)
− (a2 − b2). (2)

By Lemma 6 this implies that Rd(G) has a vertical c-separation for some positive integer c with

c ≤ kd−
(
d+ 1

2

)
− (a2 − b2) + 1 ≤ kd−

(
d+ 1

2

)
+ 1,

thus contradicting our assumption on the vertical connectivity of Rd(G).
To show that Equation (1) holds, note that rd(Gi) = d|Vi|+ kd−

(
d+1
2

)
− ai. Hence (using the fact

that a1 − b1 ≤ a2 − b2) it suffices to show that

d|Vi|+ kd−
(
d+ 1

2

)
− ai ≥ kd−

(
d+ 1

2

)
− (ai − bi) + 1,

or equivalently, that d|Vi| − 1 ≥ bi, for i ∈ {1, 2}. Recall that bi is the minimum number of new edges
needed to make G′

i d-rigid. Since S is a clique in G′
i, we may obtain a d-rigid supergraph of G′

i by ensuring
that every vertex of Vi − S has at least d neighbors in S. We can clearly do this using at most d|Vi| edges;
in fact, since S is a separator and G is connected, there is at least one edge connecting Vi and S, so adding
d|Vi| − 1 edges suffices.

It only remains to show that Equation (2) holds. We have

rd(E1) + rd(E2) = d|V1 ∪ S| −
(
d+ 1

2

)
− a1 + d|V2 ∪ S| −

(
d+ 1

2

)
− a2

= d|V | −
(
d+ 1

2

)
+ kd−

(
d+ 1

2

)
− (a1 + a2)

= d|V | −
(
d+ 1

2

)
− (a1 + b2) + kd−

(
d+ 1

2

)
− (a2 − b2).

Hence we only need to show that

d|V | −
(
d+ 1

2

)
− (a1 + b2) ≤ rd(G),

or in other words, that we can make G d-rigid by adding at most a1+ b2 edges. Let A1 and B2 be edge sets
such that |A1| = a1, |B2| = b2 and G1 +A1 and G′

2 +B2 are d-rigid. Now the Rd-closure of G+A1 +B2

contains K(V1∪S), and in particular K(S), as a subgraph. Thus it also contains the Rd-closure of G
′
2+B2,

which is K(V2 ∪ S). Hence it contains two complete graphs intersecting in k ≥ d vertices. It follows that
the Rd-closure of G+A1 +B2 is d-rigid, and hence so is G+A1 +B2, as required. □

Let G be a graph, and let k be a positive integer. We say that G is [k, d]-rigid if it is d-rigid and
remains so after the deletion of any set of fewer than k vertices.

Proposition 9 Let G = (V,E) be a graph. If G is [k, d]-rigid, then Rd(G) is vertically k-connected.



Proof: We prove by induction on k; the k = 1 case is trivial. Let us thus assume that k ≥ 2, and let us
suppose, for a contradiction, that Rd(G) has a vertical k′-separation (E1, E2) for some k′ < k. Since E1

and E2 are both nonempty and G is connected, there exists a vertex v ∈ V (E1)∩ V (E2). Note that G− v
is [k − 1, d]-rigid, and hence by the induction hypothesis Rd(G− v) is vertically (k − 1)-connected.

Let E′
i = Ei − ∂G(v) for i ∈ {1, 2}. Since G is [k, d] rigid, we must have dG(v) ≥ d+ k − 1 ≥ d+ 1,

and by definition dE1(v), dE2(v) ≥ 1. Hence we have

rd(E
′
1) + rd(E

′
2) ≤ rd(E1) + rd(E2)− (d+ 1)

≤ rd(G) + (k′ − 1)− d− 1

= rd(G− v) + (k′ − 1)− 1.

It follows that
rd(E

′
1) + rd(E

′
2) = rd(G− v) + c− 1 (3)

for some integer c with 1 ≤ c ≤ k′ − 1. If both rd(E
′
1) ≥ c and rd(E

′
2) ≥ c, then (E′

1, E
′
2) is a vertical

c-separation of Rd(G− v), a contradiction. Thus rd(E
′
1) ≤ c− 1 or rd(E

′
2) ≤ c− 1; by symmetry, we may

suppose that it is the former.
Now Equation (3) implies that rd(E

′
1) = c− 1 and rd(E

′
2) = rd(G− v). If dE2(v) ≥ d, then rd(E2) =

rd(E
′
2) + d = rd(G− v) + d = rd(G), contradicting the fact that (E1, E2) is a vertical k′-separation. Hence

dE2
(v) ≤ d− 1. It follows that

rd(E1) + rd(E2) ≥ dE1(v) + rd(E
′
2) + dE2(v) = rd(G− v) + dG(v)

≥ rd(G− v) + d+ k − 1 = rd(G) + k − 1

> rd(G) + k′ − 1.

But this contradicts, again, the fact that (E1, E2) is a vertical k′-separation. □

By combining Theorem 3 and Proposition 9, we obtain the following corollary.

Corollary 10 Let G be a graph, and let k be a nonnegative integer. If G is (k+ d(d+1))-connected, then
Rd(G) is vertically (k + 1)-connected.

We shall need the following folklore statement.

Lemma 11 [3, Lemma 5.1] Let G and H be graphs without isolated vertices, and let ψ : E(G) → E(H)
be a bijection that “sends stars to stars”; that is, for every v ∈ V (G), there is a vertex v′ ∈ V (H) such
that ψ(∂G(v)) = ∂H(v′). Then ψ is induced by a graph isomorphism.

We are now ready to prove our main results.

Proof of Theorem 4: Suppose that G = (V,E) is d(d+ 1)2-connected, let H = (V ′, E′) be a graph
without isolated vertices, and let ψ : E → E′ be an isomorphism of Rd(G) and Rd(H). Our goal is to
show that ψ is induced by a graph isomorphism.

Fix v ∈ V and consider F = E − ∂G(v). Let H0 denote the subgraph of H induced by ψ(F ); note
that Rd(G − v) and Rd(H0) are isomorphic. Since both G and G − v are (d(d + 1)2 − 1)-connected,
G and G − v are both d-rigid by Theorem 3, and Rd(G) and Rd(G − v) are both vertically d2(d + 1)-
connected by Corollary 10. It follows from Proposition 8 and a short computation that H and H0 are
both d(d+ 1)-connected, and hence by Theorem 3 they are both d-rigid.

This means that

d|V (H0)| −
(
d+ 1

2

)
= rd(ψ(F )) = rd(F ) = rd(E)− d = rd(E

′)− d = d(|V ′| − 1)−
(
d+ 1

2

)
,

and thus |V (H0)| = |V ′| − 1. Also, since F is the edge set of an induced subgraph of G, it is closed
in Rd(G), and hence ψ(F ) is closed in Rd(H). It follows that H0 is an induced subgraph of H, since
otherwise (by the fact that H0 is d-rigid) we could add edges induced by V (H0) in H to ψ(F ) without
increasing its rank.

To summarize, ψ(F ) is the edge set of an induced subgraph of H on |V ′|−1 vertices, which implies that
it is the complement of a vertex star. This shows that ψ maps complements of vertex stars to complements
of vertex stars. Since ψ is a bijection, it also follows that it maps vertex stars to vertex stars. Now Lemma
11 implies that ψ is induced by a graph isomorphism, as desired. □



Proof of Theorem 5: Our goal is to show that G is d(d+ 1)2-connected; then the statement follows
from Theorem 4. By Proposition 8, it suffices that Rd(G) is vertically k-connected, where

k = d(d(d+ 1)2 − 1)−
(
d+ 1

2

)
+ 2 = (d(d+ 1))2 − d−

(
d+ 1

2

)
+ 2 ≤ (d(d+ 1))2.

Thus G is indeed d(d+ 1)2-connected, and hence Rd-reconstructible, as required. □
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