On the Rigidity Matroid of Highly Connected Graphs
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Abstract: We prove that for any positive integer d, the generic rigidity matroid R 4(G) uniquely
determines the underlying graph G, provided that either G is d(d + 1)?-connected, or R4(G) is
(vertically) (d(d + 1))%-connected. This extends previous results for the d = 1 and d = 2 cases.
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1 Introduction

In this note, we investigate when the d-dimensional generic rigidity matroid R4(G) of a graph G determines
G. Whitney gave a complete answer to this question in the d = 1 case by showing that for any pair of
graphs G and H, any isomorphism of the graphic matroids R1(G) and R4 (H) arises from a 2-isomorphism
of G and H. In particular, his result implies the following unique reconstructibility result for 3-connected
graphs.

Theorem 1 [10] Let G and H be graphs, and let ¢ : E(G) — E(H) be an isomorphism of R1(G) and
Ri(H). If G is 3-connected and H is without isolated vertices, then v is induced by a graph isomorphism.

Our goal is to prove an analogue of Theorem 1 for higher values of d. For convenience, let us say that
a graph G is Rq(G)-reconstructible if for every graph H without isolated vertices and every isomorphism
Y Ra(G) — Ra4(H), ¢ is induced by a graph isomorphism ¢ : G — H. (That is, ¥(uwv) = ¢(u)e(v)
holds for every edge e € E(G).) Using this terminology, Theorem 1 says that every 3-connected graph is
R1-reconstructible. The constant 3 is best possible: a cycle of length at least four is not R1-reconstructible,
since its graphic matroid has automorphisms that are not induced by automorphisms of the cycle.

Jorddn and Kaszanitzky proved the following reconstructbility result in the two-dimensional case.

Theorem 2 [5] Every 7-connected graph is Ro-reconstructible.

The proof of Theorem 2 relies on the fact that every 6-connected graph is 2-rigid, a classical result of
Lovész and Yemini [6]. In fact, it is not difficult to see that a statement of the form “every c-connected
graph is R g4-reconstructible” also implies the statement “every c-connected graph is d-rigid.” Since for the
theorem of Lovédsz and Yemini, the constant 6 is known to be best possible, it follows that the constant in
Theorem 2 cannot be improved beyond 6. It is open whether the constant 7 is best possible.

In a recent breakthrough, Villanyi proved the following d-dimensional analogue of the theorem of
Lovész and Yemini.

Theorem 3 [9, Theorem 1.1] Every d(d 4 1)-connected graph is d-rigid.
In this note, we use Theorem 3 to derive a d-dimensional analogue of Theorems 1 and 2.
Theorem 4 Every d(d + 1)?-connected graph is Rq-reconstructible.

The constant d(d + 1)? is probably far from optimal. In particular, it remains open whether every
d(d 4 1)-connected graph is R4-reconstructible.

Our proof method also leads to a reconstructibility result where instead of assuming that the graph G
is highly connected, we assume that the matroid R4(G) is highly (vertically) connected.

Theorem 5 Let G be a graph. If Rq4(G) is (vertically) (d(d+1))?-connected, then G is R 4-reconstructible.
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Theorem 5 answers positively a question of Brigitte and Herman Servatius [1, Problem 17].

Compared to previous Whitney-type reconstructibility results (such as Theorems 1 and 2 and results
found in [3]), the main novelty of our proof is that it is not based on a combinatorial characterization
of the rank function of the matroid in question. Indeed, finding such a (good) characterization for the
d-dimensional generic rigidity matroid is a major open problem in the d > 3 cases.

We note that our proofs work for all 1-extendable abstract rigidity matroids. In fact, the ideas in this
note are extended in [2] to show that for a rather general class of matroids, a Lovédsz-Yemini-type rigidity
result (such as Theorem 3) leads to a Whitney-type reconstructibility result (such as Theorem 4).

2 Proof of main results

We assume basic knowledge of matroid theory and combinatorial rigidity theory. For references, see [4, 7, §].
For a vertex v of a graph G, we shall let g (v) denote the set of edges incident to v, while dg(v) = |0g(v)]
denotes the degree of v in G. The key concept behind our proof of Theorem 4 is the notion of vertical
connectivity of matroids, which we recall below.

Let M = (E,r) be a matroid with rank function r and let k be a positive integer. We say that a
bipartition (E1, Fs) of E is a vertical k-separation of M if r(E1),r(E2) > k and

r(Ey)+r(Ey) <r(E)+ k-1

holds. In this case r(E;) < r(E) for i € {1,2}. We say that M is vertically k-connected if k < r(M) and
M does not have vertical k’-separations for any positive integer k' < k. For k = 1, the latter condition is
vacuous, and hence every matroid with positive rank is vertically 1-connected.

The following lemma shows that for certifying that a matroid is not vertically k-connected, it suffices
to consider “vertical separations” E = F; U Es in which E; and Fs are not necessarily disjoint.

Lemma 6 Let M = (E,r) be a matroid, and let E1, Ey C E be subsets of E, not necessarily disjoint,
with E = Ey U Ey. Suppose that r(E1),r(E2) > k and r(E1) +r(Ey) < r(E)+k—1. Then M has a
vertical k'-separation for some k' < k.

PROOF: Let Ef = E5 — Ey. Then (E, EY) is a bipartition of E, and it is straightforward to check that it
is a vertical k’-separation for k' = k — (r(E3) —r(E5)). O

It is well-known that a graph without isolated vertices is k-connected if and only if its graphic matroid
is vertically k-connected. The main ingredients to our proof of Theorem 4, Propositions 8 and 9 below, are
partial generalizations of this fact to the d-dimensional generic rigidity matroid. Proposition 8 states that
if R4(G) has sufficiently high vertical connectivity, then G must have high vertex-connectivity (provided
that it has no isolated vertices). Conversely, Proposition 9 shows that if G is highly vertex-redundantly
rigid, then R4(G) must have high vertical connectivity. Finally, by Theorem 3, high vertex-connectivity
implies high vertex-redundant rigidity. By combining this triangle of implications with ideas from previous
Whitney-type reconstructibility results, we can deduce that sufficiently highly connected graphs are
‘R 4-reconstructible.

The next lemma follows from [5, Theorem 4.2]. Since the proof is simple, we include it for completeness.

Lemma 7 Let G = (V, E) be a graph, and let k > 2 be an integer. If Rq(G) is vertically k-connected,
then |V| >k +d.

PROOF: If d = 1, then by definition we have k < r4(G) < |V| — 1. Thus we may assume d > 2. Note that
since R4(G) is vertically 2-connected, it is bridgeless and hence every vertex of G has degree at least d + 1.
Let v € V be a vertex of smallest degree in G, and let E; be a set of dg(v) —d + 1 edges incident to v.
Then (Ey, E — Ey) is a bipartition of F with r4(F1) = dg(v) —d + 1 and

Td(El) +rq(E—Eq) < dg(v) —d+1+ Td(E) —1=ry(E)+ dg(’l)) —d.
Let w € V — v be an arbitrary vertex of G. Then we have, using the fact that v has smallest degree,

ra(E — E1) > dg(w) —1>dg(v) — (d —1). Thus (Eq, E — Ey) is a vertical (d(G) — d 4 1)-separation of
Ra4(G). Since d(G) —d + 1 < |V| — d, this implies that |V| > k + d, as desired. O

Proposition 8 Let G = (V, E) be a graph without isolated vertices, and let k > d be an integer. If Rq(Q)
is vertically (dk — (d‘;) + 2)-connected, then G is (k + 1)-connected.



PROOF: Note that by Lemma 7, G has at least k + 2 vertices. Furthermore, since R4(G) is vertically
2-connected, G is a connected (in fact, 2-connected) graph.

Suppose, for a contradiction, that G has a separator S of size at most k. By adding vertices to S
we may suppose that |S| = k. Let V5 be a component of G — S and Vo =V — (V4 U S). Let us define
G; =G[V;US] and G} = G; + E(K(S)), for i € {1,2}, where K(S) denotes the complete graph on S.
Finally, let us define

d+1

ai:d|ViUS|_< 9

d+1
) —ra(Gi), and b =d|V;U S| - ( _g ) —ra(GY),
for ¢ € {1,2}. In other words, a; and b; are the d-dimensional degrees of freedom of G; and G}, respectively.

By symmetry, we may assume that a1 — b1 < as — bs.
We shall show that

rdGQde(d;1>ang+1,i€{L2L (1)
and g1
ra(Gh) + ra(Ga) grd(G)+kd—< ;r )-(aQ—bg). 2)

By Lemma 6 this implies that R4(G) has a vertical c-separation for some positive integer ¢ with
d+1 d+1
CSkd—(;)—(C@—bz)-ﬁ-lSkd—(;)—Fl,

thus contradicting our assumption on the vertical connectivity of R4(G).
To show that Equation (1) holds, note that r4(G;) = d|Vi| + kd — (*5') — a;. Hence (using the fact
that a; — by < ag — be) it suffices to show that

1 1
d|‘/’i|+kd_<d; )—aizkd—<d; )—(ai—bi)+1,

or equivalently, that d|V;| — 1 > b;, for ¢ € {1,2}. Recall that b; is the minimum number of new edges
needed to make G d-rigid. Since S is a clique in G}, we may obtain a d-rigid supergraph of G by ensuring
that every vertex of V; — S has at least d neighbors in S. We can clearly do this using at most d|V;| edges;
in fact, since S is a separator and G is connected, there is at least one edge connecting V; and S, so adding
d|V;] — 1 edges suffices.

It only remains to show that Equation (2) holds. We have

d+1 d+1
m(E1)+7“d(E2):d|V1US|—< ! )—a1+d|V2US_< )_a2

2
— V|- (dgl) +kd — <d;1> (a1 + az)
— V|- (d;1> (a1 +bo) + kd — (d;1> ~ (az — b).

Hence we only need to show that

avi- ("3 1) @+ ) < (@),
or in other words, that we can make G d-rigid by adding at most a; + bs edges. Let A; and Bs be edge sets
such that |Aj| = a1, |Bs| = by and G1 + A; and G, + By are d-rigid. Now the Rg4-closure of G + Ay + Bo
contains K (V3 US), and in particular K (.9), as a subgraph. Thus it also contains the R 4-closure of G+ Ba,
which is K (V2 U S). Hence it contains two complete graphs intersecting in k > d vertices. It follows that
the Rg4-closure of G + A; + Bs is d-rigid, and hence so is G + Ay + By, as required. [

Let G be a graph, and let k be a positive integer. We say that G is [k, d]-rigid if it is d-rigid and
remains so after the deletion of any set of fewer than k vertices.

Proposition 9 Let G = (V, E) be a graph. If G is [k, d]-rigid, then Rq(G) is vertically k-connected.



PROOF: We prove by induction on k; the k£ = 1 case is trivial. Let us thus assume that k£ > 2, and let us
suppose, for a contradiction, that R4(G) has a vertical k’-separation (E1, Es) for some k' < k. Since E;
and FEs are both nonempty and G is connected, there exists a vertex v € V(E1) NV (E3). Note that G — v
is [k — 1, d]-rigid, and hence by the induction hypothesis R4(G — v) is vertically (k — 1)-connected.

Let E = E; — 0g(v) for i € {1,2}. Since G is [k, d] rigid, we must have dg(v) >d+k—1>d+1,
and by definition dg, (v),dg,(v) > 1. Hence we have

Td(Ei) + Td(Eé) (B1) +ra(Eg) — (d + 1)
(G)+ (K —1)—d—-1

Td(G—U)+ (k/ - 1) — 1.

<rgq
<74

It follows that
ra(Ey) +ra(Ey) = ra(G —v) +c—1 (3)

for some integer ¢ with 1 < ¢ < k' — 1. If both r4(F{) > ¢ and rq(F%) > ¢, then (Ef, E}) is a vertical
c-separation of R4(G — v), a contradiction. Thus r4(E}) < ¢ — 1 or rq(ES) < ¢ — 1; by symmetry, we may
suppose that it is the former.

Now Equation (3) implies that rq(E]) = ¢ — 1 and rq(F%) = rq(G — v). If dg,(v) > d, then rq(Es) =
ra(EY) +d =rq(G —v)+d =r4(G), contradicting the fact that (Eq, E2) is a vertical k’-separation. Hence
dg,(v) <d— 1. It follows that

ra(Ev) + ra(E2) = dp, (v) + ra(E3) + dg, (v) = ra(G — v) + da(v)
Zrd(G—v)+d+k—1:rd(G)+k—l
> T‘d(G) + K —1.

But this contradicts, again, the fact that (Ey, F2) is a vertical k’-separation. [

By combining Theorem 3 and Proposition 9, we obtain the following corollary.

Corollary 10 Let G be a graph, and let k be a nonnegative integer. If G is (k+ d(d + 1))-connected, then
Ra(G) is vertically (k + 1)-connected.

We shall need the following folklore statement.

Lemma 11 /3, Lemma 5.1] Let G and H be graphs without isolated vertices, and let ¢ : E(G) — E(H)
be a bijection that “sends stars to stars”; that is, for every v € V(Q), there is a vertex v’ € V(H) such
that ¥ (0c(v)) = 0 (v"). Then ¢ is induced by a graph isomorphism.

We are now ready to prove our main results.

PROOF OF THEOREM 4: Suppose that G = (V, E) is d(d + 1)?-connected, let H = (V', E’) be a graph
without isolated vertices, and let ¢ : E — E’ be an isomorphism of R4(G) and R4(H). Our goal is to
show that v is induced by a graph isomorphism.

Fix v € V and consider F = F — 9¢(v). Let Hy denote the subgraph of H induced by #(F"); note
that R4(G — v) and Ry(Hy) are isomorphic. Since both G and G — v are (d(d + 1)? — 1)-connected,
G and G — v are both d-rigid by Theorem 3, and R4(G) and R4(G — v) are both vertically d?(d + 1)-
connected by Corollary 10. It follows from Proposition 8 and a short computation that H and H are
both d(d + 1)-connected, and hence by Theorem 3 they are both d-rigid.

This means that

d|V(Ho)| — (d; 1) = rg(V(F)) = rq(F) = rq(E) —d = r4(E') —d = d(|V'] — 1) — <d—2k 1>’

and thus |V (Hp)| = |V’| — 1. Also, since F' is the edge set of an induced subgraph of G, it is closed
in Rq(G), and hence ¢(F) is closed in R4(H). It follows that Hy is an induced subgraph of H, since
otherwise (by the fact that Hy is d-rigid) we could add edges induced by V(Hp) in H to ¢ (F') without
increasing its rank.

To summarize, ¢ (F) is the edge set of an induced subgraph of H on |V’| —1 vertices, which implies that
it is the complement of a vertex star. This shows that 1) maps complements of vertex stars to complements
of vertex stars. Since 1 is a bijection, it also follows that it maps vertex stars to vertex stars. Now Lemma
11 implies that 1) is induced by a graph isomorphism, as desired. [l



PROOF OF THEOREM 5: Our goal is to show that G is d(d + 1)2-connected; then the statement follows
from Theorem 4. By Proposition 8, it suffices that R4(G) is vertically k-connected, where

d+1

k:d(d(d+1)2—1)—( )

>+2:(d(d+1))2—d— (d‘;) 4 2<(d(d+ 1))

Thus G is indeed d(d + 1)2-connected, and hence R4-reconstructible, as required. [
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